
Chapter 8

BEAM LOADING AND

ROBINSON'S STABILITY

Klystron or tetrodes� are employed to drive the rf cavities. When a klystron or

tetrode is coupled to an rf cavity, electromagnetic �elds are generated inside the cavity.

The electric �eld across the gap of the cavity provides the required power to compensate

for the energy loss to synchrotron radiation and coupling impedance, and to supply the

necessary acceleration to the particle beam. However, the particle beam, when passing

through the gap of the rf cavity, also excites electromagnetic �elds inside the cavity in the

same way as the klystron or the rf source. This excitation of the cavity by the particle

beam is called beam loading. Beam loading has two e�ects on the rf system. First, the

electric �eld from beam loading generates a potential, called the beam loading voltage,

across the cavity gap and opposes the accelerating voltage delivered by the klystron.

Thus more power has to be supplied to the rf cavity in order to overcome the e�ect of

beam loading. Second, to optimize the power of the klystron, the cavity needs to be

detuned. The detuning has to be performed correctly. If not, the power delivered by the

klystron will not be eÆcient. Worst of all, an incorrect detuning will excite instability

of the phase oscillation. We �rst study the steady-state beam loading and derive the

criterion for phase stability. Later, transient beam loading will be addressed. The general

methods to suppress beam loading are also reviewed. Most of the material in this chapter

comes from the lecture notes of Wilson [1], Wiedemann [2], and Boussard [3].

�Klystrons are usually used in electron rings where the rf frequencies are high while tetrodes are

usually used in proton rings where the rf frequencies are low. In this chapter, there is no intention to

distinguish between the two, and we often use the terminology rf generator instead.
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8.1 Equivalent Circuit
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Figure 8.1: Circuit model representing an rf generator current source ig driving an

rf cavity with a beam loading current iim.

The rf system can be represented by an equivalent circuit as shown in the top

diagram of Fig. 8.1. The rf cavity is represented by a RLC circuit with angular resonant

frequency

!r =
1p
LC

; (8.1)

where L and C are the equivalent inductance and capacitance of the rf cavity. The

klystron or tetrode is also represented by a RLC circuit with the angular resonant fre-

quency !rf, which is the actual rf frequency of the accelerator ring. The klystron/tetrode

is connected to the rf cavity by waveguides or transmission lines via transformers as illus-

trated. The problem can be simpli�ed considerably by assuming that there is a circulator

or isolator just before the rf cavity, so that any power which is re
ected from the cavity

and travels back towards the klystron will be absorbed. Such an assumption leads to

the equivalent circuit in the lower diagram of Fig. 8.1. The resistor Rs is called the

unloaded shunt impedance of the rf system, because it is the impedance of the isolated

cavity at its resonant frequency. The image current of the particle beam is represented

by a current source iim. This is a valid representation from the rigid-bunch approxima-

tion, because the velocities and therefore the current of the beam particles are assumed
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roughly constant when the beam passes through the cavity gap. We reference image

current here instead of the beam current ib, because it is the image current that 
ows

across the cavity gap and also into the cavity. The image current is in opposite direction

to the beam current.

On the other hand, the situation is di�erent for the klystron. The velocities of

the electrons as they pass through the the gap of the output cavity of the klystron can

change in response to the cavity �elds of the klystron. As a consequence, the rf source

is represented by a current source ig in parallel to the loading resistor Rg or admittance

Yg = 1=Rg. The latter is written in terms of the shunt admittance Ys or shunt impedance

Rs of the rf cavity as

Yg = �Ys =
�

Rs
; (8.2)

where � is the coupling coeÆcient still to be de�ned. The generator or klystron current

ig and the loading admittance Yg in the lower equivalent circuit diagram are equivalent

values and are di�erent from the actual generator current igk and actual loading admit-

tance Ygk in the klystron circuit in the top circuit of Fig. 8.1. For example, in the rf

system of the Fermilab Main Injector, igk = 12ig.

The rf generator outputs a generator current Ig in order to produce the rf gap

voltage Vrf for the beam. The total required output powery is

Ptotal =
1

2

I2g
Yg + Yload

; (8.3)

where Yload is called the load cavity admittance, which includes the admittance of the

cavity Ys = 1=Rs and also all the contribution from the particle beam. An explicit

expression will be given in Eq. (8.43) below. In the situation of a very weak beam

(ib ! 0), Yload ! Ys. The total power can be rewritten as

Ptotal =
1

2

YgI
2
g

(Yg + Yload)2
+
1

2

YloadI
2
g

(Yg + Yload)2
: (8.4)

The �rst term on the right is the power dissipated at the generator. The second term

is the power required to be transferred to the cavity and the beam, and we denote it

yThis is the power required to transfer a certain energy per unit time to the cavity and the beam, and

is di�erent from the power available to the beam and cavity. The latter is given by 1

2
~Ig � ~Vrf and becomes

zero when the load angle �L = �=2, as indicated in Eq. (8.38). On the other hand, the required power

is inversely proportional to cos2 �L. When �L ! �=2, most of the energy energy is being transferred to

the cavity as stored energy and very little is given to the beam. Therefore to satisfy the requirement of

the beam, an in�nite required power by the generator becomes necessary.
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by Pg, which is usually referred to loosely as the generator power. We wish to obtain

the condition for which this power delivered to the cavity and beam is a maximum by

equating its derivative with respect to Yload to zero. The condition is

Yload = Yg = �Ys : (8.5)

This is just the usual matching of the input impedance to the output impedance. The

maximized generator power is then

Pg =
i2g

8�Ys
=
Rsi

2
g

8�
: (8.6)

Notice that in the situation of an extremely weak beam, this matched condition is just

Yg = Ys with the coupling coeÆcient � = 1. Equation (8.6) will be used repeatedly

below and whenever the generator power Pg is referenced, we always imply the matched

condition satisfying Eq. (8.5).

Here, all the currents and voltages referenced are the magnitudes of sinusoidally

varying currents and voltages at the rf angular frequency !rf (not the cavity resonant

angular frequency !r). Their corresponding phasors always have an overhead tilde. For

example, iim is the magnitude of the Fourier component of the image current phasor
~im that 
ows into the cavity at the rf frequency. Thus, for a short bunch, we have

(Exercise 8.1),

iim = 2I0 ; (8.7)

with I0 being the dc current of the beam. As phasors, however, they are in the opposite

direction. It will be shown later, the image current phasor ~im may not be equal to the

negative beam current phasor ~ib because of possible feed-forward. In that case, I0 in

Eq. (8.7) will be the dc image current instead. For this reason, we try to make reference

to the image current that actually 
ows into the cavity instead of the beam current.

In high energy electron linacs, bunches are usually accelerated at the peak or crest

of the rf voltage wave in order to achieve maximum possible energy gain. As a result,

the klystron is operated at exactly the same frequency as the resonant frequency of the

rf cavities, i.e., !rf = !r. Without the rf generator, the beam or image current sees the

unloaded shunt impedance Rs in the cavity and the unloaded quality factor Q0, which

can easily be found to be

Q0 = !rCRs : (8.8)

With the rf generator attached, however, the beam image current source sees an e�ective

shunt impedance RL in the cavity, which is the parallel combination of the generator
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shunt impedance Rg and the cavity shunt impedance Rs. This is called the cavity loaded

shunt impedance in contrast with the cavity unloaded shunt impedance Rs. We therefore

have

RL = (Ys + Yg)
�1 =

Rs

1 + �
: (8.9)

Correspondingly, the beam image current sees a loaded quality factor in the cavity, which

is

QL = !rCRL =
Q0

1 + �
: (8.10)

Notice that
Rs

Q0

=
RL

QL

; (8.11)

independent of whether it is loaded or unloaded. In fact, Rs=Q0 is just a geometric

factor of the cavity.

The beam loading voltage is the voltage generated by the image current, and is

given by

Vbr =
iim

Yg + Ys
=

iim
Ys(1 + �)

; (8.12)

while the voltage produced by the generator is

Vgr =
ig

Yg + Ys
=

ig
Ys(1 + �)

; (8.13)

where the subscript \r" implies that the operation is at the resonant frequency, so that

the currents and voltages are in phase, although they may have sign di�erence. In terms

of the generator power Pg in Eq. (8.6), the generator voltage at resonance becomes

Vgr =

p
8�

1 + �

p
RsPg : (8.14)

It is clear that the beam loading voltage is in the opposite direction of the generator

voltage. Thus, the net accelerating voltage is

Vrf = Vgr � Vbr =
p
RsPg

� p
8�

1 + �

�
1� K

2
p
�

��
; (8.15)

where

K2 =
i2imRs

2Pg
(8.16)
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plays the role of the ratio of the beam loading power to the generator power. Since the

shunt impedance Rs of a superconducting cavity is very high, beam loading becomes

much more important. The fraction of generator power delivered to the beam is

� =
iimVrf
2Pg

=
2
p
�

1 + �
K

�
1� K

2
p
�

�
: (8.17)

The power dissipated in the cavity is

Pc =
V 2
rf

2Rs

= Pg

�
2
p
�

1 + �

�2�
1� K

2
p
�

�2

: (8.18)

From the conservation of energy, we must have

Pg = �Pg + Pc + Pr ; (8.19)

where Pr is the power re
ected back to the generator and is given by

Pr
Pg

=

�
� � 1�K

p
�

1 + �

�2

: (8.20)

So far we have not said anything about the coupling coeÆcient �. Now we can choose

� so that the generator power is delivered to the cavity and the beam without any

re
ection, or from Eq. (8.20), the optimum coupling constant is

K =
�op � 1p

�op
: (8.21)

Notice that this optimization is also a maximization of the accelerating voltage Vrf, as

can be veri�ed by di�erentiating Eq. (8.15) with respect to �.

8.2 Beam Loading in an Accelerator Ring

In a synchrotron ring or storage ring, it is necessary to operate the rf system o� the

crest of the accelerating voltage wave form in order to have a suÆcient large bucket area

to hold the bunched beam and to insure stability of phase oscillation. The klystron or

rf generator is operating at the rf frequency !rf=(2�) = h!0=(2�), where h is an integer

called the rf harmonic, and !0=(2�) is the revolution frequency of the synchronized

beam particles. Notice that this rf frequency will be the frequency the beam particles
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experience at the cavity gap and is di�erent from the intrinsic resonant frequency of

the cavity !r=(2�) given by Eq. (8.1). According to the circuit diagram of Fig. 8.1, the

impedance of the cavity seen by the particle at rf frequency !rf=(2�) can be written as

Zcav =
RL

1� jQL

�
!r
!rf
�!rf
!r

� = RL cos e
j ; (8.22)

where  is called the rf detuning angle or just detuning. As will be shown below,

detuning is an essential mechanism to make the beam particle motion stable under the

in
uence of the rf system. It is important to point out that loaded values have been

used here, because those are what the image current sees. From Eq. (8.22), the detuning

angle is de�ned as

tan = QL

�
!r
!rf
�!rf
!r

�
: (8.23)

When the deviation of !rf from !r is small, an approximation gives

tan = 2QL

!r�!rf
!r

: (8.24)

Note that in this section we have used j instead of �i, because phasor diagrams are cus-
tomarily drawn using this convention. Phasors, as illustrated in Fig. 8.2, are represented

by overhead tildes rotating counter-clockwise with angular frequency !rf if there is only

one bunch in the ring. If there are Nb equal bunches in the ring separated equally by

hb = h=Nb rf buckets, where h is the rf harmonic, we can also imagine the phasors to

be rotating at angular frequency !rf=hb. They are therefore the Fourier components at

the rf frequency or !rf=hb. This implies that we are going to see the same phasor plot

for each passage of a bunch through the rf cavity. In order to be so, the beam loading

voltage should have negligible decay during the time interval Tb = 2�hb=!rf between

two successive bunches. In other words, we require Tb � Tf in this discussion, where

Tf = 2QL=!r is the �ll time of the cavity.

Most of the time, the image current phasor ~iim has the same magnitude as that of

the beam current phasor ~ib, although in the opposite direction. When the image current
~iim interacts with the loaded cavity, according to Eq. (8.22), a beam loading voltage

phasor ~Vb will be produced and is given by

~Vb = ~iimRL cos e
j ; (8.25)

and

Vb = Vbr cos : (8.26)
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Figure 8.2: Phasor plot showing the beam loading voltage phasor ~Vb induced in the

rf cavity by the image current phasor ~iim, which lags ~Vb by the detuning angle  .

Also plotted is the beam loading voltage phasor ~Vbr, with Vb = Vbr cos when the

beam current is at the crest of the rf wave with no detuning.

Thus the voltage phasor always leads the current phasor by the detuning phase  and

the magnitude of the phasor ~Vb is less than its value at the cavity resonant frequency

Vbr by the factor cos . If one likes, one can also introduce the phasor ~Vbr which is in

phase with the current phasor ~iim and has the magnitude given by Eq. (8.26). This is

illustrated in Fig. 8.2.

Some comments are necessary. Here, we start from only one Fourier component

(the one at frequency !rf or !rf=hb) of the image current ~iim. The beam loading voltage
~Vb experienced by the beam is also a Fourier component of the same frequency. Since we

are investigating the problem in the frequency domain, this is equivalent to a very long

interval in the time domain. In other words, the result describes a steady-state problem,

implying that the beam has passed by the rf cavities many many times already. The

beam loading voltage ~Vb is therefore a sinusoidal wave in time. However, this is not

exactly what we expect from a cavity. The beam loading voltage decays exponentially

as soon as the beam leaves the rf cavity. It is charged up again like a step function when

the beam passes by again. Thus, the time dependent behavior of the beam loading

voltage is more like a sawtooth rather than sinusoidal. Putting it in another way, more

than one Fourier component will be necessary to fully describe the beam loading picture.

However, if the exponential decay is slow, the beam loading wave will behave more like

sinusoidal. Therefore, our description of the beam loading problem here is valid only

when the cavity decay time constant (or �ll time)

Tf =
2QL

!r
(8.27)
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is very much longer than the interval Tb between successive beam passage. We will

address a more accurate description later.

There are good reasons that detuning is necessary. The �rst one is for the compen-

sation of beam loading, which we describe in the next subsection. One may argue why we

do not just employ an extra generator current equal and opposite to the image current

for a simple 100% compensation. This requires the generator to deliver unnecessarily

large current at a phase angle other than that of the rf voltage. Needless to say, this

will result in a degradation of the eÆciency of the rf excitation system and an increase

in cost. The second reason is phase stability. When the center of the beam deviates

from its proper rf phase, proper detuning will damp the deviation and guarantee phase

stability. This will be addressed later in the section on Robinson's stability.

8.2.1 Steady-State Compensation

In Fig. 8.3, the total current phasor ~it inside the cavity is the vector sum of the image

current phasor ~iim and the generator current phasor ~ig. The rf voltage phasor ~Vrf is at

the synchronous angle �s and leads the total current phasor by the detuning angle  .

The current phasor ~i0 is the projection of ~it along ~Vrf . Thus, ~i0 is the generator current

required to set up the rf voltage when the cavity is at resonance and when there is no

beam current. In other words, i0 = Vrf=RL = (1 + �)Vrf=Rs, where � is the coupling

coeÆcient of the generator to the rf cavity and Rs is the unloaded shunt impedance.

We want to solve for the load angle �L that the the generator current phasor lags

the rf voltage phasor. By projecting along and perpendicular to the rf voltage phasor,

one obtains

tan �L =
i0 tan � iim cos�s

i0 + iim sin�s
; (8.28)

and

ig =
i0 + iim sin�s

cos 
: (8.29)

To optimize the eÆciency of the generator, the generator current phasor ~ig and

the rf voltage phasor ~Vrf should be in the same direction, because in this way the load

will appear real to the generator and the stored energy will be reduced to a minimum.
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Figure 8.3: Phasor plot showing the vector addition of the image current phasor
~iim and the generator current phasor ~ig to give the total current phasor ~it. The

latter lags the rf voltage phasor ~Vrf at synchronous phase �s by the detuning angle

 . Note that the generator current phasor is not in phase with the rf voltage phasor.

It lags ~Vrf by the load angle �L.

Substituting for �L = 0, we obtain the in-phase conditions

tan =
iim cos �s

i0
(8.30)

and

ig = i0 + iim sin�s : (8.31)

Figure 8.4 shows the voltage phasors inside the cavity with the rf voltage phasor ~Vrf
in phase with the generator current phasor ~ig. Here, we see that the beam loading

voltage phasor ~Vb is ahead of the image current phasor ~iim by the detuning angle  .

The generator voltage phasor ~Vg is also ahead of the generator current phasor ~ig by the

detuning angle  . These two voltage phasors add up to give the gap voltage phasor ~Vrf
which has a synchronous angle �s. The in-phase condition can also be obtained from

this phasor diagram. Since the voltage components perpendicular to ~ig must add up to
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Figure 8.4: Phasor plot showing the vector addition of the generator voltage phasor
~Vg and the beam loading voltage phasor ~Vb to give the gap voltage phasor ~Vrf in an

rf cavity. Note the detuning angle  which puts the gap current phasor ~ig in phase

with the gap voltage phasor.

zero, after dividing by Rs cos , we get

ig sin = iim sin(�
2
+ �s �  ) : (8.32)

Next, resolve the current contributions along ~ig and we obtain Eq. (8.31). Finally,

eliminate ig and arrive at the in-phase condition of Eq. (8.30).

Notice that steady-state beam loading has been compensated by the introduction

of a suitable generator current. This compensation scheme with detuning is much more

eÆcient than the one without, because part of the beam loading voltage has been utilized

in the rf voltage and the generator current is in phase with the rf voltage. In other words,

the generator power required will be smaller than when there is no detuning. Actually,

it can be readily shown by di�erentiating Eq. (8.35) below with respect to the detuning

angle  that the generator power is the smallest when the in-phase condition is met

between the generator current phasor and the rf voltage phasor. In the event that the

beam intensity is very high, the beam loading voltage Vb can become much larger than

the required gap voltage Vrf . Needless to say, to balance such a large a very high power

ampli�er will be necessary to generate the required generator current Ig. When this

happens, low-level rf feedback can be installed to reduce the e�ective cavity impedance

as observed by the beam. A low-level rf feed-forward is also possible to cancel partly or
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completely the image current. These methods will be discussed later in Sec. 8.4.4.

The generator power Pg can be computed with the aid of Eq. (8.14), namely,

Pg =
(1 + �)2V 2

gr

8�Rs
; (8.33)

where Vgr is the generator voltage at the cavity resonant frequency, and is related to the

generator voltage Vg at the rf frequency by Vg = Vgr cos . Using the cosine law for the

triangle made up from ~Vg, ~Vb, and ~Vrf , it is easy to obtain

V 2
g = V 2

b + V 2
rf � 2VbVrf sin( � �s) ; (8.34)

or

V 2
gr = V 2

br + V 2
rf(1 + tan2  )� 2VbrVrf(tan cos�s � sin�s) ; (8.35)

where Vbr = Vb= cos is the beam loading voltage at the cavity resonant frequency. From

Eq. (8.14), the required generator power for the cavity and beam can be expressed as

Pg =
Rs

8�

�
(i0 + iim sin�s)

2 + (i0 tan � iim cos�s)
2
�
; (8.36)

where

Vbr =
Vb

cos 
=
iimRs

1 + �
(8.37)

is the beam loading voltage at the cavity resonant frequency, and the de�nition of i0
in Eq. (8.31) has been used. If the correct detuning is made so that ~Ig and ~Vrf are in

phase, the second term on the right-hand side vanishes and the expression is very much

simpli�ed. On the other hand, we notice that the two terms on the right-side resemble

the denominator and numerator on the right-side of Eq. (8.28). We can therefore rewrite

the generator power in terms of the load angle �L,

Pg =
Rs

8�

(i0 + iim sin�s)
2

cos2 �L
; (8.38)

which recovers the situation of in-phase detuning when �L = 0. The factor cos2 �L is

important. It tells us that when the load angle �L ! �=2, an in�nite generator power is

required. This is because only the fraction cos2 �L of the power goes into the beam and

the majority, sin2 �L, goes into charging the cavity.

Again we can optimize the generator power by choosing the best coupling constant

�, which turns out to be

�op = 1 +
iimRs sin�s

Vrf
= 1 +

Pb
Pc

; (8.39)
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where

Pc =
V 2
rf

2Rs
(8.40)

is the power dissipated in the walls of the cavity and

Pb =
1
2
iimVrf sin�s = I0Vrf sin�s (8.41)

is the power spent on accelerating the beam, since Vrf sin�s is the accelerating voltage.

Here, we have used Eq. (8.7), the fact that the Fourier component image current at the

rf frequency (or at !rf=hb) is nearly twice the dc beam current I0 when the bunch is

short. At the optimized coupling constant, the generator power becomes

Pg op =
V 2
rf

2Rg
=

V 2
rf

2Rs
�op = Pb + Pc ; (8.42)

which just states that the power is transmitted to the cavity completely without any

re
ected. Here, we can identify the load cavity admittance Yload de�ned in earlier in

Eq. (8.4) as

Yload =
iim sin�s
Vrf

+
1

Rs
; (8.43)

where the �rst term on the right is admittance of the beam and the second term is the

admittance of the cavity.

Usually there is a servo-tuner which measures the phase di�erence between the

generator current phasor and rf gap voltage phasor, and controls the cavity tune via a

mechanical plunger or ferrite bias, so that the phase di�erence vanishes. At equilibrium

of the servo-tuner, Eqs. (8.30) and (8.31) are automatically satis�ed, and the cavity

detuning corresponds to

�! = !r � !rf =
!rRLiim cos�s

2QLVrf
: (8.44)

8.3 Robinson's Stability Criteria

8.3.1 Phase Stability at Low Intensity

We are now in the position to discuss the conditions for phase stability. Suppose that

center of the bunch has the same energy as the synchronous particle, but is at a small



8-14 8. BEAM LOADING AND ROBINSON'S STABILITY

φs

E∆

rf
φ iim

∼

Vrf
∼

ib
∼

Vb
∼

ψ

ε
ε1

ε

Figure 8.5: With the bunch center at Point 1 in the synchrotron oscillation, the

beam current phasor ~ib arrives earlier by being ahead of the x-axis at a small angle

� > 0 in the phasor plot. The bunch sees a smaller rf voltage Vrf sin(�s��) if the
synchronous phase 0 < �s <

1
2�. It is decelerated. Below transition, it will arrive

not so early in the next turn and phase stability is therefore established.

phase advance �rf = � > 0, as depicted by Point 1 in the synchrotron oscillation and the

phasor ~ib in the phasor plot in Fig. 8.5. The phasor ~ib arrives earlier by being ahead of the

x-axis at a small angle � > 0. Then the accelerating voltage it sees will be Vrf sin(�s��)
instead of Vrf sin�s, or an extra decelerating voltage of �Vrf cos�s if 0 < �s <

1
2
�.

Receiving less energy from the rf voltage than the synchronous particle will slow the

bunch. If the beam is below transition, this implies the reduction of its revolution

frequency, so that after the next h rf periods its arrival ahead of the synchronous particle

will be smaller or � will become smaller. The motion is therefore stable. Therefore to

establish stable phase oscillation when beam loading can be neglected, one requires

(
0 < �s <

�
2

below transition;
�
2
< �s < � above transition:

(8.45)

This is exactly the same condition for stable phase oscillation we conclude from the

expression for the synchrotron tune in Eq. (2.14). Notice that this is just the condition

of phase stability and there is no damping at all. Here, the derivation relies on the fact

that the rf voltage phasor ~Vrf is unperturbed and this is approximately correct when the

beam intensity and therefore the beam loading voltage is small.
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8.3.2 Phase Stability at High Intensity

When the beam current is very intense, we can no longer neglect the contribution of the

beam loading voltage. The condition of phase stability in Eq. (8.45) will be modi�ed.

Now, go back to Fig. 8.5 when the beam current phasor arrives at an angle � > 0 ahead

of the x-axis but is at the same energy as the synchronous particle, the image current

phasor ~iim will also advance by the same angle � after h rf periods. Therefore, there

will be an extra beam loading voltage phasor �iimRL cos e
j( +3�=2), which constitutes

the perturbation of the rf voltage phasor ~Vrf . If  < 0, this phasor will point into the

3rd quadrant and decelerate the particle in concert with �Vrf cos�s in slowing the beam,

thus causing no instability below transition. On the other hand, if  > 0, this phasor

will point into the 4th quadrant and accelerate the particle instead. To be stable, the

extra accelerating voltage on the beam must be less than the amount of decelerating

voltage �Vrf cos�s, or�
Vrf sin(�s � �)� Vrf sin�s

�
+ �iimRL cos sin � ��Vrf cos�s + �Vbr cos sin < 0 :

(8.46)

Thus for phase stability, we require

Vbr
Vrf

<
cos �s

sin cos 

(
 > 0 below transition;

 < 0 above transition;
(8.47)

which is called Robinson's high-intensity criterion of stability. In above, Vbr = iimRL is

the in-phase beam loading voltage when the beam is in phase with the loaded cavity

impedance.

Notice that this Robinson's high-intensity criterion of stability is only a criterion

of phase stability similar to the phase stability condition of Eq. (8.45). Satisfying this

criterion just enables stable oscillating like sitting inside a stable potential well. Violating

this criterion will place the particle in an unstable potential well so that phase oscillation

will not be possible. To include damping or antidamping due to the interaction of the

beam with the cavity impedance, another criterion of Robinson stability, Eq. (8.57)

below, must be satis�ed also.

We can also look at the phase stability problem in another way. In order that the

beam can execute stable phase oscillation, it must see a linear restoring force when the

beam deviates from its equilibrium position. This force comes from change in the rf

voltage ~Vrf seen by the beam when the beam is at an o�set. This explains why we have
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Figure 8.6: When the generator voltage phasor ~Vg becomes in phase with the beam

current phasor, it provides no force gradient to the beam in the direction of the

beam. Since the restoring force vanishes for an in�nitesimal o�set of the beam

arrival time, the beam is on the edge of instability in phase oscillation.

the gradient of the rf accelerating voltage or Vrf cos�s in Eq. (2.14), the expression of

the synchrotron tune. Now the rf voltage phasor ~Vrf is the sum of the beam loading

voltage phasor ~Vb and the generator voltage phasor ~Vg, or

~Vrf = ~Vb + ~Vg : (8.48)

Notice that the beam loading voltage phasor ~Vb moves with the beam and therefore

will not provide any force gradient or restoring force to the beam. In other words,

d ~Vb=d� = 0. Thus only the generator voltage phasor ~Vg can provide such a restoring

force. Therefore, we should compute d ~Vg=d�. If this gradient enhances the displacement

of the beam from the synchronous position, the system is unstable; otherwise, it is stable.

When the generator voltage phasor is in phase with the beam as illustrated in Fig. 8.6,

it is clear that for any small variation of time arrival � of the beam, the beam will not

see any variation of the generator voltage phasor ~Vg in the direction of the beam, or

d ~Vg=d� = 0 in the direction of the beam. In other words, there is no restoring force to

alter the energy of the beam so as to push it back to its equilibrium position. Thus the

con�guration in Fig. 8.6 constitutes the Robinson's limit of phase stability. From the

�gure, it is evident that the projection of ~Vrf and ~Vb perpendicular to the beam must be

the same or the stability limit is

Vrf cos �s = iimRL cos sin ; (8.49)
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which is exactly the same as Eq. (8.47).

Now let us impose the condition that the generator current ~ig is in phase with the

rf voltage ~Vrf . First, we have i0 = Vrf=RL, so that Robinson's criterion of phase stability

in Eq. (8.47) can be rewritten as

iim
i0

<
cos�s

sin cos 

(
 > 0 below transition;

 < 0 above transition:
(8.50)

Second, the in-phase condition implies Eq. (8.30), which simpli�es the above to

iim
i0

<
1

sin�s
; (8.51)

after eliminating the detuning. If we further optimize the generator power by choosing

the coupling constant �op given by Eq. (8.39), it is easy to show that

iim sin�s
i0

=
�op � 1

�op + 1
< 1 : (8.52)

In other words, the Robinson's phase stability criterion will always be satis�ed when the

generator current phasor ~ig and the rf voltage phasor ~Vrf are in phase and the coupling

between the generator and the rf cavities is optimized.

When the generator current phasor and the rf voltage phasor are in phase, Fig. 8.6

immediately gives the phase stability limiting criterion for the detuning as

 =
�

2
� �s : (8.53)

Substituting into the in-phase condition of Eq. (8.30) reproduces the stability criterion

of Eq. (8.51). The stability criterion can also be rewritten as

1
2
Vrfiim sin�s <

1
2
Vrfi0 ; (8.54)

where the right side is PL, the power dissipated in the cavities and the generator, while

the left side is Pb, the power supplied to the beam for acceleration and/or compensation

of energy lost to radiation and impedance. Thus, Robinson's phase stability criterion

can also be reworded as

Pb < PL ; (8.55)

or the power allocated to dissipation is larger than the power delivered to the beam.
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The Robinson's limit of phase stability is correct only if there is no other stabilizing

mechanism available. In an accelerator ring, there is usually a loop that monitors the

beam loading and feedbacks onto the generator current so as to maintain the required

rf gap voltage and synchronous phase. This correction, however, is not instantaneous,

because it takes time for the new generator voltage to establish inside the rf cavity.

If gain of the feedback is high, the time delay can be much faster than the �ll time

Tf = 2QL=!r of the cavity. If this time delay is short compared with the synchrotron

period, phase stability can be established, even if the criterion Pb < PL is violated. The

former Fermilab Main Ring at its peak intensity ofNp = 3:25�1013 protons/pulse (about
3:25�1010 per bunch for 1000 bunches) serves as an example. The ring had a mean radius
of 1 km and therefore a revolution frequency f0 = 47:7 kHz. The dc beam current was

I0 = eNpf0 = 0:245 A or the image current was iim = 2I0 = 0:490 A assuming that the

bunches are short. With 15 working cavities each supplying 213 kV, the total rf voltage

was Vrf = 3:2 MV. The acceleration rate was 125 GeV/s or 2.62 MeV/turn. Thus,

sin�s = 0:819 and iim sin�0 = 0:407 A. Each cavity had a loaded shunt impedance

of 0:60 M
, or the total loaded shunt impedance was RL = 9:00 M
. The current

required to set up the rf voltage turned out to be i0 = Vrf=RL = 0:355 A, which less

than iim sin�0. Thus, Robinson's phase stability criterion had been violated. There was

a servo-tuner that guaranteed the generator current phasor to be in-phase with with rf

voltage phasor. There were also rf voltage magnitude and phase loops to maintain the

the proper rf voltage and synchronous phase. The rf cavities were of !r=(2�) = 53:1 MHz

with a loaded quality factor QL � 5000. The cavity �ll time was then Tf = 30:0 �s or

about 1.43 revolution turns, small compared with the synchrotron period of � 100 turns.

The modi�cation of the detuning is usually the slowest part of the feedback procedure,

but it is de�nitely faster than the synchrotron frequency. As a result, phase stability

was maintained even when Robinson's stability criterion was not ful�lled.

8.3.3 Robinson's Damping

Next, we consider the interaction of the beam with the impedance of the rf system. As

we will see, proper detuning damps synchrotron oscillations while improper detuning

leads to an oscillation with increasing amplitude. During half of a synchrotron period,

the center of the bunch is at a higher energy than the synchronous particle. For the sake

of convenience, choose the particular moment when the phase of bunch center is just in

phase with the synchronous particle, so that the phasor ~ib is exactly along the x-axis.
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Figure 8.7: With bunch center at Point 2 in the synchrotron oscillation, the beam

current phasor ~ib is in phase with the x-axis in the phasor plot. Below transition,

higher energy implies higher e�ective rf frequency !rf . The bunch sees a smaller

e�ective detuning angle and loses more energy per turn than when the bunch is

at the synchronous position. The synchrotron oscillation amplitude is therefore

damped.

This is illustrated by Point 2 in the synchrotron oscillation and the beam current phasor

being in phase with the x-axis in the phasor plot in Fig. 8.7. Below transition, however,

higher energy implies higher revolution frequency !0. The detuning  which is de�ned

by

tan = 2QL

!r � !rf
!r

(8.56)

appears e�ectively smaller from the view of the bunch center, when we consider the

e�ective rf frequency as !rf = h!0. The energy loss per turn, which is iimjZcavj cos , will
be larger than if the bunch center is synchronous. For the other half of the synchrotron

period, the beam particle has an energy smaller than the synchronous particle and

revolves with a lower frequency, and therefore sees a larger e�ective detuning. Again we

choose the moment when the phase of the bunch center is just in phase with synchronous

particle, or Point 3 in the synchrotron oscillation. The bunch will lose less energy than

if it is synchronous. The result is a gradual decrease in the energy o�set oscillation

after oscillation. This reduction of synchrotron oscillation amplitude is called Robinson

damping. Notice that if the detuning is in the other direction below transition,  < 0,

the beam particle will lose less energy when its energy is higher than synchronous and

lose more energy when its energy is less. The oscillation amplitude will increase turn
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after turn and the beam will therefore be Robinson unstable. The opposite is true if the

beam is above transition. We therefore have the criterion of Robinson stability:�
 > 0 or !r > !rf below transition;

 < 0 or !r < !rf above transition:
(8.57)

Notice that so far we have not imposed any optimization condition on the rf system. If

the cavity tuning is adjusted so that the generator current ~ig is in the same direction as

the rf voltage ~Vrf, so that the beam-cavity impedance appears to be real as demonstrated

in Fig. 8.4, the beam will always be Robinson stable, because the detuning will always

satisfy Eq. (8.57) according to Eq. (8.30).

8.4 Transient Beam Loading

By transient we mean that the �ll time of the cavity Tf is not necessarily much longer

than the time interval Tb for successive bunches to pass through the cavity. In other

words, the beam loading voltage from the �rst bunch will have signi�cant decay before

the successive bunch arrives.

First, let us understand how the transient beam loading occurs. As the bunch of

charge q > 0 passes through the cavity gap, a negative charge equal to that carried

by the bunch will be left by the image current at the upstream end of the cavity gap.

Since the negative image current will resume from the downstream end of the cavity gap

following the bunch, an equal amount of positive charge will accumulate there. Thus, a

voltage will be created at the gap opposing the beam current and this is the transient

beam loading voltage as illustrated in Fig. 8.8. For an in�nitesimally short bunch, this

transient voltage is

Vb0 =
q

C
=
q!rRs

Q0
; (8.58)

where C is the equivalent capacitance across the gap of the cavity. Notice that we will

arrive at the same value if the loaded shunt impedance RL and the loaded quality factor

QL are used instead. Due to the �nite quality factor Q0, this induced voltage across the

gap starts to decay immediately, hence the name transient beam loading. We will give

concrete example about the size of the voltage later. The next question is how much of

this beam loading voltage will be seen by the bunch. This question is answered by the

fundamental theorem of beam loading �rst derived by P. Wilson [1].
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Figure 8.8: As a positively charged bunch passes through a cavity, the image current

leaves a negative charge at the upstream end of the cavity gap. As the image current

resumes at the downstream side of the cavity, a positive charge is created at the

downstream end of the gap because of charge conservation, thus setting up an electric

�eld ~E and therefore the induced beam loading voltage.

8.4.1 Fundamental Theorem of Beam Loading

When a particle of charge q passes through a cavity that is lossless (in�nite Rs and

in�nite Q0), it induces a voltage Vb0 which will start to oscillate with the resonant

frequency of the cavity. Suppose that the particle sees a fraction f of Vb0, which opposes

its motion. After half an oscillation of the cavity, a second particle of charge q passes

through the cavity. The �rst induced voltage left by the �rst is now in the direction of

the motion of the second particle and accelerates the particle. At the same time, this

second particle will induce another retarding voltage ~Vb0 which it will see as a fraction

f . This second retarding voltage will cancel exactly the �rst one inside the cavity, since

the cavity is assumed to be lossless. In other words, no �eld will be left inside the cavity

after the passage of the two particles. The net energy gained by the second particle is

�E2 = qVb0 � fqVb0 ; (8.59)

while the �rst particle gains

�E1 = �fqVb0 : (8.60)

Conservation of energy requires that the total energy gained by the two particles must

be zero. This implies f = 1
2
. In other words, the particle sees one half of its transient

beam loading voltage, which is the fundamental theorem of beam loading.
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Figure 8.9: Phasor plot showing the the instant just after the second passage of

the charged particle through the lossless cavity. The induced beam loading voltage

phasors for the two passages are labeled as V
(1)
b0 and V

(2)
b0 , respectively.

The following is a more general proof by Wilson. The �rst particle induces a voltage

phasor ~V
(1)
b0 in the lossless cavity which may lie at an angle � with respect to the voltage

~Ve seen by that particle. As before, we suppose Ve = fVb0, where Ve and Vb0 are the

magnitudes of, respectively, ~Ve and ~V
(1)
b0 . Some time later when the cavity phase changes

by �, the same particle returns via bending magnets or whatever and passes through the

cavity again. It induces a second beam loading voltage phasor ~V
(2)
b0 . At this moment,

the phasor ~V
(1)
b0 rotates to a new position as illustrated in Fig. 8.9. The net energy lost

by the particle on the two passes is

�E = 2fqVb0 cos � + qVb0 cos(� + �) : (8.61)

The cavity, however, gains energy because of the beam loading �elds left behind. The

energy inside a cavity is proportional to the square of the gap voltage. If the cavity is

free of any �eld to start with, the �nal energy stored there becomes

�Ec = �

�
2Vb0 cos

�

2

�2

= 2�V 2
b0(1 + cos �) ; (8.62)

where � is a proportionality constant. From the conservation of energy, we get

2fqVb0 cos � + qVb0(cos � cos � � sin � sin �)� 2�V 2
b0(1 + cos �) = 0 : (8.63)
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Since � is an arbitrary angle, we obtain

qVb0 sin � = 0 ;

qVb0 cos � = 2�V 2
b0 ;

2fqVb0 cos � = 2�V 2
b0 : (8.64)

The �rst equation gives � = 0 implying that the transient beam loading voltage must

have a phase such as to maximally oppose the motion of the inducing charge. Clearly

� = � will not be allowed because this leads to the unphysical situation of the particle

gaining energy from nowhere. Solving the other two equations, we obtain f = 1
2
.

8.4.2 From Transient to Steady State

Let the bunch spacing be hb rf buckets or Tb in time. The cavity time constant or �lling

time is Tf = 2QL=!r and the e-folding voltage decay decrement between two successive

bunch passages is ÆL = Tb=Tf . During this time period, the phase of the rf �elds changes

by !rTb and the rf phase by !rfTb = 2�hb. The phasors therefore rotate by the angle

	 = !rTb � 2�hb, which can also be written in terms of the detuning angle,

	 = (!r � !rf)Tb = ÆL tan ; (8.65)

where Eq. (8.24) has been used. The transient beam loading voltage left by the �rst

passage of a short bunch carrying charge q is Vb0 = q=C = q!rRL=QL. The total beam

loading voltage Vb seen by a short bunch is obtained by adding up vectorially the beam

loading voltage phasors for all previous bunch passages. The result is

Vb =
1
2
Vb0 + Vb0

�
e�ÆLej	 + e�2ÆLej2	 + � � � � ; (8.66)

where the 1
2
in the �rst term on the right side is the result of Wilson's fundamental

theorem of beam loading, which states that a particle sees only one-half of its own

induced voltage. It is worth pointing out that these voltages are excitations of the

cavity and are therefore oscillating at the cavity resonant frequency (all higher order

modes of the cavity are neglected). This in�nite series of induced voltage phasors is

illustrated in Fig. (8.10). The summation can be performed exactly giving the result

Vb = Vb0

h
F1(ÆL;  ) + jF2(ÆL;  )

i
; (8.67)

with

F1 =
1� e�2ÆL

2D
; F2 =

e�ÆL sin(ÆL tan )

D
; (8.68)
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Figure 8.10: Transient beam loading voltages from equally spaced bunches. Each

preceding voltage phasor has a phase advance of  because of detuning and a decay

of e�ÆL . Note that the bunch that is just passing by sees only half of its induced

voltage ~Vb0. These voltage phasors add up to the total beam loading voltage phasor
~Vb. Together with the generator voltage ~Vg, the cavity gap voltage results at the

synchronous angle �s.

D = 1� 2e�ÆL cos(ÆL tan ) + e�2ÆL : (8.69)

In terms of the coupling constant � and detuning angle  , we have

tan = 2QL

!r � !rf
!r

;

QL =
Q0

1 + �
;

ÆL = Æ0(1 + �) ;

(8.70)

where we have de�ned Æ0 = Tb=Tf0 with Tf0 being the �lling time of the unloaded cavity.

Then the single bunch induced beam loading voltage becomes

Vb0 = 2I0RsÆ0 ; (8.71)

use has been made of the approximation for short bunches, so that the Fourier component

of the current of a bunch at frequency !rf=hb is equal to twice its dc value or ib = 2I0
and I0 = q=Tb. Putting things together, we get

Vb = 2I0RsÆ0

�
F1(Æ0; �;  ) + jF2(Æ0; �;  )

�
; (8.72)
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with

F1(Æ0; �;  ) =
1� e�Æ0(1+�)

2D
; (8.73)

F2(Æ0; �;  ) =
e�Æ0(1+�) sin[Æ0(1 + �) tan ]

D
; (8.74)

D = 1� 2e�Æ0(1+�) cos[Æ0(1 + �) tan ] + e�2Æ0(1+�) : (8.75)

Some comments are in order. Figure 8.10 shows the transient nature of beam loading

if the beam loading voltage phasors, that rotate by the angle 	 and have their magnitudes

diminished by the factor e�ÆL for each successive time period, are excitations of one

short bunch. However, what we consider is in fact the diminishing beam loading voltage

phasors coming from successive bunches that pass through the cavity at successive time

periods nTb earlier with n = 1; 2; � � � . For this reason, what Fig. 8.10 shows is actually
the steady-state situation of the beam loading voltages, because for each time interval

Tb later, we will see exactly the same spiraling beam loading phasor plot and the same

total beam loading voltage phasor ~Vb. Therefore, we can add into the plot the generator

voltage phasor ~Vg in the same way as the plot in Fig. 8.4. In fact, the plot in Fig. 8.4

provides only an approximate steady-state plot, because the beam loading voltage phasor

there does attenuate a little bit after a 2� rotation of the phasors, although a high QL has

been assumed. However, such attenuation has already been taken care of in Fig. 8.10,

resulting in the plotting of an exact steady state. When the bunch arrives, the beam

loading voltage phasor is ~Vb as indicated in Fig. 8.10. It rotates counterclockwise and its

magnitude decreases because of �nite quality factor of the cavity. Just before the arrival

of the next bunch, the beam loading voltage phasor becomes ~Vb� 1
2
~Vb0. Notice that the

beam loading voltage phasor rotates for more than 2�, since !r > !rf or the detuning

angle  is positive in Fig. 8.10. As soon as the next bunch arrives, it jumps by 1
2
~Vb0 and

goes back to ~Vb. Therefore, the beam loading voltage phasor is not sinusoidal and does

not rotate at the speed of !rf or !rf=hb. It approaches sinusoidal only when the jump

of the transient beam loading voltage 1
2
~Vb0 is small and that happens when the loaded

quality factor QL is large, or when the cavity �lling time Tf = 2QL=!r is much larger

than the time interval Tb between successive bunch passages. On the other hand, the

beam loading voltage phasor ~Vb seen by the bunch in Fig. 8.4 is sinusoidal because it is

induced by a sinusoidal component of the beam. In fact, over there, we allow for only

one Fourier component.



8-26 8. BEAM LOADING AND ROBINSON'S STABILITY

Using Eq. (8.14), the generator power Pg can now be computed:

Pg=
(1 + �)2V 2

rf

8�Rs cos2  

(�
sin�s� ibRsÆ0

Vrf
F1(Æ0; �;  )

�2
+

�
cos�s+

ibRsÆ0
Vrf

F2(Æ0; �;  )

�2)
:

(8.76)

In the situation when the generator current ~ig is in phase with the rf voltage ~Vrf, the

generator power can be minimized so that there will not be any re
ection. Similarly,

the generator power can also be optimized by choosing a suitable coupling coeÆcient �.

Unfortunately, these optimized powers cannot be written as simple analytic expressions.

8.4.2.1 Limiting Case with Æ0 ! 0

When the bunch spacing Tb is short compared to the unloaded cavity �lling time Tf0,

simpli�ed expressions can be written for the total beam loading voltage Vb. One gets

F1(Æ0; �;  ) =
1

Æ0(1 + �)(1 + tan2  )
; (8.77)

F2(Æ0; �;  ) =
tan 

Æ0(1 + �)(1 + tan2  )
; (8.78)

so that

Vb =
ibRs

1 + �

1

1� j tan 
: (8.79)

Notice that this is exactly the same expression in Eq. (8.25). In fact, this is to be

expected, because we are in the situation of Tb � Tf , or the case of a high QL resonating

cavity.

In the absence of detuning, the beam loading voltages left by previous bunches just

added up to give

Vb =
Vb0
2

1 + e�ÆL

1� e�ÆL
: (8.80)

For a high-QL cavity, this becomes

Vb =
Vb0
ÆL

= ibRL ; (8.81)

which is the maximum beam loading voltage seen by the beam.

When Æ0 ! 0, the phase angle 	 = Æ0(1 + �) tan ! 0, although the detuning

 may be �nite. Thus, the transient beam loading voltage ~Vb0 will not decay and will
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also line up for successive former bunch passages, leading to an in�nite total beam

loading voltage Vb seen by the bunch. However, Æ0 ! 0 implies letting Q0 ! 1
while keeping the shunt impedance �xed. Thus, the instantaneous beam loading voltage

Vb0 = q=C = q!rRs=Q0 = 2ibRsÆ0 also goes to zero, implying that the summation

has to be done with care. For successive Vb0's to wrap around in a circle, one needs

approximately 2�=	 Vb0's. The radius of this circle will be Vb0=	. As Æ0 ! 0, this

radius becomes

lim
Æ0!0

Vb0
	

=
2ibRs

tan 
; (8.82)

which is �nite. In fact, this is roughly the same as the total beam loading voltage Vb as

Æ0 ! 0.

During bunch-to-bunch injection, the transient beam loading voltage in the cavity

will add up gradually as is indicated in the spiral in Fig. 8.10. Thus, if the decay

decrement is small, the total beam loading voltage will reach a maximum roughly equal

to twice the voltage given by Eq. (8.72) before spiraling to its limiting value. The

maximum beam loading voltage will be twice the value given by Eq. (8.79) as if the

shunt impedance has been doubled.

8.4.2.2 Limiting Case with Tb � Tf

This is the situation when the instantaneous beam loading voltage decays to zero before

a second bunch comes by. It is easy to see that F1(Æ0; �;  ) ! 1
2
and F2(Æ0; �;  ) ! 0.

From Eq. (8.76), it is clear that the generator power increases rapidly as the square of

Æ0. This is easy to understand, because the rf power that is supplied to the cavity gets

dissipated rapidly. A pulse rf system will then be desirable. In such a system, the power

is applied to the cavity for about a �lling time preceding the arrival of the bunch. For

most of the time interval between bunches, there is no stored energy in the cavity at all

and hence no power dissipation.

8.4.3 Transient Beam Loading of a Bunch

When a bunch of linear density �(�) passes through a cavity gap, electromagnetic �elds

are excited. The beam loading retarding voltage seen by a particle at time � ahead of
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the bunch center is given by

V (�) =

Z 1

�

q�(� 0)W 0
0(�

0 � �)d� 0 ; (8.83)

where q is the total charge in the bunch, �(�) is normalized to unity when integrated

over � , and W 0
0(�) is the wake potential left by a point charge at a time � ago. If we

approximate the cavity as a RLC parallel circuit with angular resonant frequency !r,

loaded quality factor QL, and loaded shunt impedance RL, the wake potential can be

written as, for � > 0,

W 0
0(�) =

!rRL

QL

e���
h
cos �!� � �

�!
sin �!�

i
: (8.84)

For � < 0, W 0
0(�) = 0 because of causality. For � = 0, W 0

0(�) = !rRL=(2QL) because of

the fundamental theorem of beam loading. In above, the decay rate � and the shifted

resonant angular frequency �! are given by

� =
!r
2QL

and �! =
p
!2
r � �2 : (8.85)

Notice that this is exactly the same wake potential we studied in Eq. (1.48) of Exer-

cise 1.3. For the convenience of derivation, we introduce the loss angle � which is de�ned

asz

cos � =
�!

!r
and sin � =

�

!r
: (8.86)

With this introduction, the wake potential can be conveniently rewritten as

W 0
0(�) =

!rRL

QL cos �
Re ei(ei�!r�+�) : (8.87)

The �rst application is for a point bunch with distribution �(�) = Æ(�). Substitution

into Eq. (8.83) gives V (�) = qW 0
0(��), or

V (�) =

8>>>>><
>>>>>:

0 � > 0 ;

q!rRL

2QL

� = 0 ;

q!rRL

QL cos �
Re ei(ei�!r�+�) � < 0 :

(8.88)

Thus, the head of the bunch (� = 0+) sees no beam loading voltage. The tail of the

bunch (� = 0�) sees the transient beam loading voltage Vb0 = q=C as given by Eq. (8.58).

The center of the bunch sees one half of Vb0.

zIf one prefers, this angle can also be de�ned as cos � = �=!r and sin � = �!=!r.
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8.4.3.1 Gaussian Distribution

Consider a Gaussian distributed bunch of rms length �� . The linear density is

�(�) =
1p
2���

e��
2=(2�2� ) : (8.89)

The beam loading voltage experienced by a beam particle at distance � ahead the bunch

center is (Exercise 8.5)

V (�) =
q!rRL

2QL cos �
Re ei���2=(2�2� )w

�
��!re

i�

p
2

+
i�p
2��

�
; (8.90)

where q is the total charge in the bunch and w is the complex error function de�ned as

w(z) = e�z
2

�
1 +

2ip
�

Z z

0

et
2

dt

�
: (8.91)

It can be readily shown that as the bunch length shortens to zero, the head, center, and

tail of the bunch are seeing the transient beam loading voltage (Exercise 8.5)

V (�) =

8>>>>><
>>>>>:

0 � = 0 + (head) ;

q!rRL

2QL

� = 0 (center) ;

q!rRL

QL

� = 0� (tail) ;

(8.92)

exactly the same result for a point bunch. In fact, Eq. (8.92) just serves as another proof

of the fundamental theorem of beam loading that the test charge sees one half of its own

beam loading voltage. This proof is more general than those presented in the previous

subsection, because it involves a lossy cavity or a cavity with a �nite quality factor QL.

The beam loading voltages of a Gaussian bunch are plotted in Fig. 8.11. They

are all normalized to q!rRL=QL, which is the beam loading voltage when the bunch

is contracted to a point. Each curve is identi�ed by two parameters: (QL; F ), where

F =
p
6!r��=� is roughly the fraction of the rf wavelength occupied by the bunch, since

we usually equate the half 95% Gaussian bunch length to
p
6�� . The horizontal coordi-

nate is the distance of the test particle ahead the bunch center in units of �� , the rms

bunch length. We notice that as the bunch becomes shorter, the beam loading voltage

becomes larger. When it becomes very short, the curve with (1,0.01), we recover the
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Figure 8.11: The beam loading voltage, normalized to q!rRL=QL, of a bunch with

Gaussian distribution seen by a particle at distance �=�� ahead the bunch center,

where �� is the bunch rms length and q the total charge in the bunch. Each curve is

labeled by (QL; F ), where F =
p
6!r��=� is roughly the fraction of the rf wavelength

occupied by the bunch, andQL, RL, and !r=(2�) are, respectively, the loaded quality

factor, loaded shunt impedance, and resonant frequency of the cavity.

results in Eq. (8.92) that a particle at the center of the bunch sees one half of the bunch

beam loading voltage. When the quality factor of the cavity becomes larger, the beam

loading voltage does not decay as fast and its reduced amplitude is therefore closer to

unity. We also notice that the beam loading voltage seen by each particle in the bunch

varies along the bunch. This result is important, because it is diÆcult to compensate

for the beam loading voltage to every point along the bunch.

8.4.3.2 Parabolic Distribution

Consider a bunch with parabolic distribution,

�(�) =
3

4�̂

�
1� � 2

�̂ 2

�
j� j � �̂ ; (8.93)

where �̂ is the half bunch length. As the bunch of total charge q passes through a cavity,

the transient beam loading voltage seen by a particle at a distance T behind the head
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of the bunch is (Exercise 8.6), for T � 2�̂ ,

V (T ) =
q!rRL

QL

3p2

2�2 cos �

(
p

�

�
!r(�̂�T ) cos �+sin 2�

�
+

+ e��T
�
sin(�!T�2�)� p

�
cos(�!T��)

�)
; (8.94)

and for T > 2�̂ ,

V (T ) =
q!rRL

QL

3p2

2�2 cos �

(
e��(T�2�̂ )

�
p

�
sin
�
�!(T�2�̂)�2�

�
� cos

�
�!(T�2�̂)��

��
+

+ e��T
�
sin(�!T�2�)� p

�
cos(�!T��)

�)
; (8.95)

where

p =
�

!r�̂
: (8.96)

Beside the normalization factor q!rRL=QL, the beam loading voltage depends on two

parameters: !r�̂ and the loaded quality factor QL.

Figure 8.12 shows the beam loading voltage seen by a bunch with parabolic distribu-

tion. The normalization is also to q!rRL=QL. The horizontal coordinate is the fractional

distance T=(2�̂) of the test particle behind the head of the bunch. Each voltage curve is

labeled by the two parameters (QL; F ), where F = !r�̂ =� = 1=p is the ratio of the total

bunch length to the rf wavelength. All the comments of the beam loading voltage of the

Gaussian bunch apply here also.

8.4.3.3 Cosine-Square Distribution

Consider a bunch with cosine-square linear distribution,

�(�) =
1

�̂
cos2

��

2�̂
j� j � �̂ ; (8.97)

where �̂ is the half bunch length. As the bunch of total charge q passes through a cavity,

the transient beam loading voltage seen by a particle at a distance T behind the head
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Figure 8.12: The beam loading voltage, normalized to q!rRL=QL, of a bunch with

parabolic distribution seen by a particle at distance T=(2�̂ ) behind of the head of the

bunch, where 2�̂ is the total bunch length and q the total charge in the bunch. Each

curve is labeled by (QL; F ), where F = !r�̂ =� is the fraction of the rf wavelength

occupied by the bunch, andQL, RL, and !r=(2�) are, respectively, the loaded quality

factor, loaded shunt impedance, and resonant frequency of the cavity.

of the bunch is (Exercise 8.6), for T � 2�̂ ,

V (T ) =
q!rRL

QL

p2

2�D cos �

(�
1� p2

�
sin

�(�̂�T )
�̂

cos � + p cos
�(�̂�T )

�̂
sin 2�+

+ p3e��T sin �!T � pe��T sin(�!T�2�)
)
; (8.98)

and for T > 2�̂ ,

V (T ) =
q!rRL

QL

p2

2�D cos �

(
pe��(T�2�̂ )sin [�!(T�2�̂)�2�]� p3e��(T�2�̂ )sin �!(T�2�̂)+

+ p3e��T sin �!T � pe��T sin (�!T�2�)
)
; (8.99)

where p is given by Eq. (8.96) and

D = 1� 2p2 cos 2� + p4 : (8.100)
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Besides the factor outside the curly brackets, the beam loading voltage depends on two

parameters: !r�̂ and the loaded quality factor QL.

Figure 8.13 shows the beam loading voltage seen by a bunch with cosine-square

distribution. The normalization is also to q!rRL=QL. The test particle is at the fractional

distance T=(2�̂) behind the head of the bunch. We labeled each reduced beam loading

voltage curve by (QL; F ), where F = !r�̂ =� = 1=p is the ratio of the total bunch length

to the rf wavelength. All the comments concerning the beam loading voltage of the

Gaussian bunch apply to here as well.

Figure 8.13: The beam loading voltage, normalized to q!rRL=QL, of a bunch with

cosine-square distribution seen by a particle at distance T=(2�̂ ) behind the head of

the bunch, where 2�̂ is the total bunch length. Each curve is labeled by (QL; F ),

where F = !r �̂ =� is the fraction of the rf wavelength occupied by the bunch, and QL,

RL, and !r=(2�) are, respectively, the loaded quality factor, loaded shunt impedance,

and resonant frequency of the cavity.

8.4.3.4 Cosine Distribution

Consider a bunch with cosine linear distribution,

�(�) =
�

4�̂
cos

��

2�̂
j� j � �̂ ; (8.101)

where �̂ is the half bunch length. As the bunch of total charge q passes through a cavity,

the transient beam loading voltage seen by a particle at a distance T behind the head
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of the bunch is (Exercise 8.6), for T � 2�̂ ,

V (T ) =
q!rRL

QLcos �

p2

8D

(�
1� p2

4

�
cos

�T

2�̂
cos � +

p

2
sin

�T

2�̂
sin 2�+

+ e��T
�
p2

4
cos(�!T + �)� cos(�!T + �)

�)
; (8.102)

and for T > 2�̂ ,

V (T ) =
q!rRL

QLcos �

p2

8D

(
e��(T�2�̂ )

�
p2

4
cos

�
�!(T � 2�̂ ) + �

�
� cos

�
�!(T � 2�̂ )� �

��
+

+ e��T
�
p2

4
cos(�!T + �)� cos(�!T + �)

�)
: (8.103)

where p and D are given by Eqs. (8.96) and (8.100). Besides the factor outside the curly

brackets, the beam loading voltage depends on two parameters: !r�̂ and the loaded

quality factor QL.

Figure 8.14 shows the beam loading voltage seen by a bunch with cosine-square

distribution. The normalization is also to q!rRL=QL. The test particle is at the fractional

distance T!r=(2�) behind the head of the bunch, or the time is normalized to an rf

wavelength. The reduced beam loading voltage depends on two parameters: !r�̂ and

the loaded quality factor QL. We labeled each reduced beam loading voltage curve

by (QL; F ), where F = !r�̂ =� = 1=p is the ratio of the total bunch length to the rf

wavelength. All the comments concerning the beam loading voltage of the Gaussian

bunch apply to here as well. Both curves are for the high quality factor QL = 5000. For

the example of F = 0:3, the reduced transient beam loading voltage has a maximum of

0.681 within the bunch length and later rings for a long time at the frequency !r=(2�)

of the cavity with an amplitude 0.918 decaying very slowly. This amplitude is roughly

equal to I1=(2I0), where I1 is the rf component of the bunch current and I0 is the

average bunch current. Because the e-folding decaying time is QL=� rf buckets, the

bunch is seeing these ringing amplitudes left by its predecessors. For a ring with all

buckets occupied, the beam loading voltage seen by a bunch is

Vb =
q!rRL

QL

�
A+B

�
1 + e�ÆL + e�2ÆL + � � � �� ; (8.104)

where ÆL is the decay decrement. Here, A denotes the portion of the beam loading

voltage excited instantaneously by the bunch crossing the cavity gap while B denotes
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Figure 8.14: The beam loading voltage, normalized to q!rRL=QL, of a bunch with

cosine distribution seen by a particle at distance T (normalized to the rf wavelength)

behind the head of the bunch. Each curve is labeled by (QL; F ), where F = !r�̂ =�

is the fraction of the rf wavelength occupied by the bunch, and QL, RL and !r=(2�)

are, respectively, the loaded quality factor, loaded shunt impedance, and resonant

frequency of the cavity.

whatever left by the previous crossings. Comparing with Eq. (8.66) for a point bunch

(F = 1), we have A = 1
2
and B = 1. For a bunch of �nite extent, for example F = 0:3

in the cosine distribution, we have A = 0:681 and B = I1=(2I0) = 0:918. For a high

QL, it is the second term that dominates. We can conclude that compared with a point

bunch, a distributed bunch of �nite length will have its beam loading voltage lowered

only by a small amount, i.e., by the fraction I1=(2I0).

The situation of F = 1 is very special and is represented by the dashed curve.

Here, the bunch is as long as the rf wavelength. In fact, the situation corresponds to a

bunch �lling the rf bucket uniformly. Although the �rst maximum is A � 0:2, the actual

ringing amplitude is roughly B � 0:33. It is easy to show that I1=(2I0) = 1=3. In other

words, even when the bunch �lls up the bucket, the beam loading voltage is decreased

by a factor of only 3.

We plot in Fig. 8.15 I1=(2I0) as functions of F , the total bunch length in units of rf

wavelength, for various bunch distribution. We see that when the bunch is short, I1=(2I0)
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drops very slowly with F and is distribution weakly-dependent only when the bunch is

long. When the total bunch length equal the bucket length or F = 1, I1=(2I0) = 1=2,

exp(��2=16), 1/3, and 3=�2, respectively, for the cosine-square, Gaussian, cosine, and

parabolic distribution.

Figure 8.15: Ratio of the rf component of the bunch to two times the dc component,

I1=(2I0), as functions of F , total bunch length in units of bucket length, for, from

top to bottom, cosine-square, Gaussian, cosine, and parabolic distributions.

8.4.4 Transient Compensation

We are going to give a short overview of some methods to cope with transient beam

loading. The serious readers are referred to the references for further reading.

For a ring in the storage mode with all rf buckets �lled with bunches of equal charges,

each bunch is seeing exactly the same beam loading voltage, except for the in
uence of

its small amount of synchrotron motion. We say that the beam loading is in the steady

state and compensation can be made by detuning the cavity if the beam intensity is not

too high.

However, the beam loading in many circumstances is in the transient state when

there is a sudden change in beam intensity. One example is injection when bunches are
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injected one by one. The beam loading voltage inside the rf cavity will increase linear

with time, and the beam loading voltage seen by a bunch depends on time as well as

its location along the ring. Obviously, slow extraction of an intense beam will also lead

to sudden changes in the beam loading voltage. Another example is a gap left in an

accelerator ring to allow for the �ring of the injection and extraction kickers. Such a gap

is also bene�cial in clearing particles of opposite charge trapped inside the beam in order

to eliminate collective two-stream instability. In the presence of a gap, the total beam

loading voltage experienced in a cavity will be di�erent during di�erent bunch passages.

For example, the bunch just after the gap will see the smallest beam loading voltage

and the bunch just preceding the gap will see the most. As a result, the last bunch in

the bunch train or batch will always see a lower rf voltage than the �rst bunch. At best,

there will be a synchronous phase di�erence between the bunches leading to increase in

longitudinal bunch area. At worst, the �nal bunches of the batch will not have enough

voltage for stability. Strictly speaking, the word transient has been used wrongly for

the problem of a gap, because such an e�ect occurs even when the stored beam is in the

steady state. The uneven beam loading voltage experienced by the di�erent bunches in

the batch is a result of having many frequency components in the beam loading voltage

besides the ones at the rf frequency and its multiples. Because of this, we should de�ne

the term transient beam loading as e�ects at frequencies other than the fundamental rf,

its multiples, and their synchrotron sidebands.

One way to reduce beam loading, either steady-state or transient, is to reduce the

loaded shunt impedance RL of the cavity seen by the beam [9]. An obvious method is to

add a resistance in parallel. Although this reduces the voltage created by both the beam

and the power ampli�er, however, the power requirements of the ampli�er are increased.

If the power ampli�ers are already operating at their capacity, this is not an applicable

solution.

Another possibility for reducing the beam loading voltage generated by the beam

is to have another power ampli�er to supply an additional generator current Ig equal

and opposite to the beam image current. These two currents cancel each other at the

cavity gap, making the cavity look like a short circuit to the beam. This method is very

fast because there is no need to �ght against the �lling time of the cavity since there

is no net current 
owing across the cavity gap at all and therefore no additional �elds

created inside the cavity. This is a powerful but expensive solution due to the extra

ampli�er required. It is called high-level feed-forward compensation and is applicable

for �xed rf frequency only. It was added to the CERN Intersecting Storage Ring (ISR)
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rf system not so much to improve stability but due to a power limitation in the rf power

ampli�er. It can be shown [3] that the extra power required can become halved if the

cavity is hal
y pretuned before the injection so that the peak powers before and after

injection are the same. In other words, the power is unmodulated even when the beam

is fully modulated. The required power can be lowered by a factor of two again if there

is optimum matching between the rf generator and the cavity. This can be accomplished

by having a circulator inserted between the rf power and the cavity so that the additional

current for the beam loading compensation means also real power.

To avoid high power consumption, there are also methods for low-level compensa-

tion. One technique is referred to as feed-forward [10]. The bunch current at a location

preceding the cavity in the accelerator ring is measured and the signal is added to the

low-level rf drive of the power ampli�er so that an additional generator current Ig equal

and opposite beam current is generated at the time the bunch crosses the cavity gap,

as illustrated in Fig. 8.16. Experience and analysis show a dramatic increase in the
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Figure 8.16: Block diagram of direct rf feed-forward, where B(s) is the beam

response and S is the transconductance of the ampli�er.

instability threshold. This scheme has been successfully applied in the CERN Proton

Synchrotron (PS) and the CERN Proton Synchrotron Booster (PSB). The instability

threshold can probably be raised an order of magnitude. This is because the cavity

voltage is completely decoupled from the beam signal, which nulli�es the Robinson's

instability. However, it is diÆcult to apply when the rf frequency is varying. The feed-

back path through the beam response is fairly weak, so the risk of creating an unstable

system response is low. However, with a weak feedback, any errors in the system will

not be compensated, so it is very important that the delay and phase advance of the
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systems are properly tuned for beam cancellation. In practice, maintaining an error free

system is very diÆcult when large amounts of impedance reduction is required.

A second technique of reducing the cavity impedance is ampli�er feedback. The

voltage in the cavity is measured, ampli�ed and added to the low-level rf drive, as is

illustrated in Fig. 8.17. To compute the impedance seen by the beam, the input at the
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Figure 8.17: Block diagram of direct rf feedback, where the ampli�er gain is G and

the transconductance is S. The e�ective impedance seen by the beam is reduced

from RL to RL=(1 + SGRL).

generator is turned o�. The cavity voltage is ampli�ed to GVrf where G is the gain. It is

then transformed into a current �SGVrf through the transconductance S. This current

is next fed through the generator and produces the additional gap voltage �SGVrfZ,
giving a total gap voltage of Vrf = Vb � SGVrfZ, where Vb = RLib is the beam loading

voltage produced by the beam current ib in the absence of the feedback loop. The

e�ective impedance experienced by the beam becomes

Re� =
RL

1 + SGRL

; (8.105)

where H = SGRL is called the open loop gain. Thus, by increasing the gain, the shunt

impedance can be largely reduced. The main feedback path for this system no longer

includes the beam response, and it is much stronger. The low-level feedback is very fast

and the delay just depends on the length of the cables of the feedback loop. This is

the most powerful method known and can be applied even for varying rf frequency. It

has been applied to the CERN ISR at 9.5 MHz with H = 60, the CERN Antiproton

Accumulator at 1.85 MHz with H = 120, and the CERN PSB at 6 to 16 MHz with

H = 5 to 12.
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In addition, there are a number of feedback loops in an rf accelerating system to

assure that the particle beam will be accelerated according to the prescribed ramp design

and to guarantee stability even when the Robinson's stability limit is exceeded. In the rf

system of the former Fermilab Main Ring, for example, there are �ve feedback loops: [11]

(1) Rf frequency control loop, which compares the beam bunch phase versus rf phase

comparitor and output an error signal. It is dc coupled with very low bandwidth. rf

frequency.

(2) Beam radial position control loop, which controls the radial position of the beam

by making small adjustment to the synchronous phase angle. It is dc coupled with

bandwidth about 10 kHz.

(3) Correction loop for cavity gap voltage phase versus generator voltage phase. It is

ac coupled with 5 MHz bandwidth and is capable of fast adjustment of cavity excitation

phase to compensate for transient beam loading e�ects.

(4) Cavity voltage amplitude control loop, which adjusts the generator current such

that the rf voltage amplitude developed at the cavity gap equals to its prescribed value.

It has a very high dc gain (� 60 db) and corner frequency 5 Hz.

(5) Detuning loop, which monitors the load angle between the generator current and

the cavity gap voltage and adjusts the cavity tuning through ferrite biasing so that the

load impedance presented to the generator appears to be real. It has a high dc gain

(� 60 db) with low bandwidth and corner frequency 1 Hz.

Among these, the second and third loops are the fastest, while the detuning loop is

the slowest. These loops are not only limited by their gains, because they are only

independent when the beam intensity is low. As the beam intensity increases, they

become coupled and gradually lose their function.

For large rf systems, long delays may be unavoidable and the conventional rf feed-

back would have a too restricted bandwidth, may be much smaller than the cavity

bandwidth itself. However, in the spectrum of transient beam loading, it is only those

revolution harmonic lines that require nulli�cation, and there is nothing in between the

harmonics. With a return path transfer function having a comb-�lter shape with max-

ima at every revolution harmonic, this condition can be satis�ed. The overall delay of

the system must be extended to exactly one machine turn to ensure the correct phase

at the harmonics. Nullifying the beam signals at the revolution harmonics other than

the fundamental rf frequency cures the transient beam loading.
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8.4.4.1 Coupled-Bunch Instabilities

As will be discussed in Chapter 9, narrow resonances located at the synchrotron side-

bands may excite longitudinal coupled-bunch instabilities. Although these narrow res-

onances originate mostly from the higher-order modes of the cavities, some may also

comes from the revolution harmonics of the beam loading voltage excited because of

having asymmetric �ll in the stored beam. These harmonic lines have �nite widths due

to energy spread of the bunches and the synchrotron oscillations that develop because

of the rf phase o�sets. Thus, these harmonic components of the beam loading voltage

can drive coupled-bunch instabilities and their nulli�cation through comb-�lter shape

feedback is very essential.

Even for a ring of bunches with asymmetric gaps, the detuning of the cavities may

also drive coupled bunch instabilities. This happens for a large machine where the

revolution frequency f0 is low. Detuning can very often shift the peak of the intrinsic

resonant frequency of the cavities by more than one or more revolution harmonic. Here,

we use a design of the former Superconducting Super Collider (SSC) as an example [5].

The average beam current is I0 = 0:073 A. and a 374.7-MHz rf system is chosen. There

are 8 cavities each having a shunt impedance RL = 2:01 M
 and RL=QL = 125 
, or

QL = 1:608� 104. At storage, the rf gap voltage per cavity is Vrf = 0:5 MV. Thus the

required detuning is given by

2QL

!r � !rf

!r
= tan =

iim cos�s
i0

: (8.106)

At �s � � and using short-bunch approximation, we obtain

!r � !rf

!r
= � iimRL

2VrfQL

= �0:183� 10�4 ; (8.107)

or a detuning of �fr = �6:84 kHz. The half bandwidth of the loaded cavity is �f =

fr=(2QL) = 11:68 kHz. However the revolution frequency of the collider ring is only

f0 = 3:614 kHz. In other words, the resonant impedance of the cavities would occur at a

frequency slightly greater than frf � 2f0 and have a spread covering about 10 revolution

harmonics. Such impedance could drive longitudinal coupled-bunch instabilities with

considerable strength. If we compute this with the Fermilab Main Ring at a total of

3:25� 1013 protons in the ring, we �nd that j�fr=ff j = 1:33� 10�4 or j�frj = 7:1 kHz

during acceleration, while the half bandwidth of the cavities is� 4:4 kHz. These numbers

are very much less than the revolution frequency f0 = 47:7 kHz. On the other hand, the
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200-MHz traveling-wave accelerating structures in the CERN Super Proton Synchrotron

(SPS) have a considerable bandwidth so that the impedance at frf � nf0 for small

n is appreciable. Coupled-bunch instabilities arising from this impedance have been

reported [6]. This also happens in the Low Energy Ring (LER) of the SLAC B-factory.

Matching the klystron to the rf cavities requires the cavity be detuned to a frequency

near frf�1:5f0, thus driving longitudinal coupled-bunch instabilities [7] in modes �1 and
�2. Longitudinal coupled-bunch instabilities are usually alleviated by damping passively
the driving resonances in the cavity or employing a mode damper. Here, the problem

is quite di�erent. First, we cannot damp this fundamental mode passively because we

require it to supply energy to the beam. Second, usually the higher-order resonances that

drive the coupled-bunch instabilities are much weaker than the fundamental. However,

it is the fundamental that drives the coupled-bunch instabilities here. In other words,

a very much powerful damper will be necessary to remove the instabilities. Because of

this complication, a solution to this problem proposed in the SSC Conceptual Design

Report is not to detune the cavity at the expense of increasing the required rf power.

8.5 Examples

8.5.1 Fermilab Main Ring

Once the former Fermilab Main Ring operated above transition inM = 567 consecutive

bunches with total intensity 5� 1013 protons. The ring consisted of h = 1113 rf buckets

and the rf frequency was !r=(2�) = 53:09 MHz There were 15 rf cavities, each of

which had a loaded shunt impedance of RL = 500 k
 and the loaded quality factor was

QL = 5000.

At steady state, the kth bunch in a bunch train of M bunches sees a beam loading

voltage of (Exercise 8.7)

Vbk = V0e
�(k�1)ÆL + Vb0

�
1
2
+ e�ÆL + � � �+ e�(k�1)ÆL

�
; (8.108)

where ÆL = �=QL is the decay decrement,

Vb0 =
qB!rRL

QL

(8.109)

is the transient beam loading voltage left by a bunch carrying charge q, B is a parameter

de�ned in Eq. (8.104) to take care of the fact that the bunch has a �nite length, and is
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equal to the current component at the rf frequency divided by twice the dc current, and

V0 = Vb0
e�(h�M+1)ÆL � e�hÆL

(1� e�ÆL)(1� e�hÆL)
(8.110)

is the beam loading voltage seen by the �rst bunch due to the excitation by earlier

passages of the beam. The di�erence in beam loading voltage experienced by the last

and the �rst bunch is therefore

�Vb = Vb0
e�ÆL[1� e�(M�1)ÆL ][1� e�(h�M)ÆL ]

(1� e�ÆL)(1� e�hÆL)
: (8.111)

For the Fermilab Main Ring with B = 0:872, we obtain Vb0 = 0:411 kV and �Vb =

113 kV for one cavity. In the storage mode the gap voltage per cavity was Vrf = 66 kV.

Thus, if the generator current Ig is in phase with the gap voltage and the synchronous

angle was exactly �s = � at the passage of the �rst bunch through the cavity, the

last bunch will see a synchronous angle �s = tan�1(ÆVb=Vrf) � 1
3
�. Such a large shift

is intolerable because this will lead to a synchrotron oscillation of the center of the

last bunch with an amplitude of 1
6
� and �nally result in a large growth of longitudinal

emittance. There was a correction loop in the rf system that was capable of adding plus

or minus quadrature currents up to
p
3 times the existing generator current to the input

of the power ampli�er [11]. With such an addition the synchronous angle goes back to

�. The response time was � 300 ns, about 16 bunch periods, and was limited by the

length of the cable loop. During such time, a maximum synchrotron phase shift of only

2:8Æ could develop and was tolerable.

Equation (8.111) shows that �Vb is small when there are only a small number of

consecutive bunches in the ring (M ! 1). This is expected because it just gives the

sum of the beam loading voltages of these few bunches while V0 ! 0. On the other

hand, if the ring is almost �lled (M ! h), �Vb is also small, because of this is close to

a symmetric �lling of the ring. It is easy to show that the maximum �Vb occurs when

the ring is half �lled, or when the length of the gap is equal to the length of the bunch

train.

8.5.2 Fermilab Booster

The injection into the Fermilab Booster from the Fermilab Linac is continuous for up

to 10 Booster turns. After that the beam is bunched by adiabatic capture, which takes
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place in about 150 �s while the rf voltage increases to 100 kV. During the injection, the

beam is coasting and does not contain any component of the rf frequency. However,

during adiabatic capture, both the rf voltage and the rf component of the current in-

crease. If the former does not increase fast enough, Robinson's stability criterion will be

violated. In general, the most dangerous moment is when the bucket area is equal to the

bunch area. After that, the ratio of rf component beam signal to rf voltage decreases.

However, the rf voltage during adiabatic capture in the Booster is maintained through

counter-phasing. This is accomplished by dividing the 18 cavities into two groups. The

required voltage amplitude and synchronous angle are obtained by varying the relative

phase between the two groups. Thus the gap voltage in each cavity is not small and

individually Robinson's stability is satis�ed in each cavity. Counter-phasing is essential

during adiabatic capture: First, maintaining too low a gap voltage inside a cavity will

cause multi-pactoring. Second, the response of raising rf voltage during the capture

through varying the generator current is slow because one has to �ght the quality factor

of the cavities, whereas controlling the rf voltage through varying the relative phase is

fast. Since the beam loading voltage always points in the same direction aside from a de-

tuning angle, to achieve counter-phasing, the generator current must be di�erent in the

two sets of cavities. The implication is that it will not be possible to have the generator

current in phase with the gap voltage. Thus extra rf power will be required [12].

In the present booster cycle, the maximum power delivered to the beam is Pb =

265 kW at Vrf = 864 kV, while the maximum power lost to the ferrites is PL = 830 kW.

Since Pb < PL all the time, phase stability is guaranteed. To ensure that the beam

accelerates according to the designed ramp curve, there is a slow low-level feedback

loop which keeps the beam at the correct radial position in the aperture of the vacuum

chamber by adjusting the synchronous phase angle. There is also a fast low-level feedback

loop which damps phase oscillations. At extraction, since all bunches are kicked out at

the same location in one revolution turn, the bunches will not see any transient beam

loading voltage at all.

Actually, there are usually only M = 80 bunches in the ring of rf harmonic h = 84,

and 4 bunch spaces are reserved for the extraction kicker. At the intensity of 6 � 1010

proton per bunch, the transient beam loading voltage excited in each of the 18 cavities

by one bunch at passage is Vb0 = q!rRL=QL = 37:9 V where RL=QL � 13 
 per cavity.

According to Eq. (8.111), the di�erence in beam loading voltage experienced between

the last and �rst bunch is �Vb = 3:76Vb0 = 142 V. The beam gap is created near the

end of the ramp, where the rf voltage has the lowest value of 305 kV at extraction, or
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16.9 kV per cavity. This amounts to an rf phase error of 0:48Æ. Typically, a bunch

at extraction has a half width of 2.8 ns or 54Æ. Thus the phase error is comparatively

small and so is the increase in bunch area due to dilution. For this reason, no action is

necessary to compensate for this gap-induced beam loading.

8.5.3 Fermilab Main Injector

A batch of 84 bunches is extracted from the Fermilab Booster and injected into the

Fermilab Main Injector. The rf frequency is !r=(2�) = 52:8 MHz and the rf harmonic

is h = 588. Each bunch contains 6 � 1010 particles. At injection, at the rf voltage

of 1.2 MV and a bunch area of 0.15 eV-s, the half length is 28.3 ns. There are 18 rf

cavities with a total RL=QL = 1:872 k
 and QL = 5000. At the passage of the �rst

bunch across the cavities, the transient beam loading voltage excited in all the cavities

is Vb = qB!rRL=QL = 5:46 kV, where we have taken B = 0:915 by assuming a parabolic

distribution. At the passage of the last bunch of the batch, the total beam loading voltage

excited becomes Vb = 444 kV, where we have taken into account the decay decrement

but the detuning has been set to zero. If there is a second batch transferred from the

Booster, this will take place after one Booster cycle or 66.7 ms. During this time interval,

steady-state has already reached, since the �ll time of the cavities is 2QL=!r = 30 �s

(about 2.7 turns). Figure 8.18 shows the beam loading voltages experienced by the 84

bunches in the batch in their �rst, second, and third passages through the cavities. The

top trace represents the voltages seen when steady-state is reached. The di�erence in

beam loading voltages seen by last and �rst bunch can be read out from the �gure. It

can also be computed analytically from Eq. (8.111) to be �Vb = 388 kV. Actually, this

di�erence is not much di�erent from that experienced even in the �rst revolution turn

because of the large quality factor of the cavities. The designed rf voltage at injection

is Vrf = 1:2 MV. If the designed synchronous phase �s = 0 is synchronized to the

middle bunch of the batch, the phase error introduced becomes ��s = �9:18Æ for the
�rst and last bunches. This large di�erence in beam loading voltage, however, will not

lead to energy di�erence along the bunches. The o�-phase bunches will be driven into

synchrotron motion instead. The �rst and last bunch will have amplitudes of oscillation

��s = �9:18Æ. Eventually, the bunch area will increase. Measured in rf phase, the half

width of the bunch at injection is 53:8Æ. Thus, the bunch length will increase linearly

from the middle bunch towards the front and the rear of the batch, with a maximum

fractional increase of 9.18/53.8=17%. Such an increase is tolerable at this moment.

There is a fast feedback loop with a delay of only 16 bunch spacings (300 ns), implying
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Figure 8.18: Beam loading voltages experienced by the 84 bunches in the batch at

their �rst, second, and third passages of the Main Injector rf cavities. The top trace

shows the beam loading voltages when steady state is reached. In the computation,

cavity detuning has been set to zero.

that the maximum di�erence in beam loading voltage will only be � 88 kV and the

phase error introduced will only be � �2:1Æ. Unfortunately, this feedback loop is not

working most of the time.

Notice that proper detuning does not help here if we want to keep the generator

current in phase with the rf voltage for the middle bunch. For half of the batch (42

bunches), the accumulated phase shift due to detuning is of the order of 1Æ so that the

transient beam loading voltages of individual bunches still add up almost in a straight

line (Exercise 8.8).

There is an upgrade plan that increases the bunch intensity by a factor of 5. The

transient beam loading will then become intolerable, because the phase error can be as

large as ��s = �58Æ. One proposal of compensation is feedforward. One proposal is to

replace all the cavities with ones that have the same QL, but with RL=QL reduced by

a factor of 5. The beam loading e�ects will be the same as before. However, reducing

the shunt impedance RL 5 times implies the requirement of a larger generator current
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(
p
5 = 2:2 times) in order to supply the same rf power.

There is a plan to slip-stack two Booster batches and capture them into 84 bunches

of double intensity [8]. In order that two series of rf buckets can �t into the momentum

aperture of the Main Injector, the rf voltage employed to sustain the bunches will have

to decrease to less than 100 kV. Relatively, the transient beam loading problem becomes

very severe. To control beam loading, the followings are planned:

1. Using only 2 or 4 of the 18 cavities to produce the required rf voltage and de-Qing

the remaining cavities. One simple technique that may de-Q the cavities by a factor of

3 is to turn o� the screen voltage to reduce the tube plate resistance.

2. Feed-forward the signal of the wall current monitored at a resistive-wall gap to the

cavity drivers. Experience at the Main Ring expects to achieve a 10-fold reduction in

the e�ective wall current 
owing into the cavities.

3. Feedback on all the cavities. A signal proportional to the gap voltage is ampli�ed,

inverted, and applied to the driver ampli�er. Based on experience in the Main Ring and

results achieved elsewhere, a 100-fold reduction can be achieved.

8.5.4 Proposed Prebooster

Let us look into the design of a proposed Fermilab prebooster which has a circumference

of 158.07 m. It accelerates 4 bunches each containing 0:25 � 1014 protons from the

kinetic energy 1 to 3 GeV. Because of the high intensity of the beam, the problems of

space charge and beam loading must be addressed. We wish to examine the issues of

beam loading and Robinson instabilities based on a preliminary rf system proposed by

GriÆn [13].

8.5.4.1 The Ramp Curve

Because of the high beam intensity, the longitudinal space-charge impedance per har-

monic is Zk=njspch � �j100 
. But the beam pipe discontinuity will contribute only

about Zk=njind � j20 
 of inductive impedance. The space-charge force will be a large

fraction of the rf-cavity gap voltage that intends to focus the bunch. A proposal is to

insert ferrite rings into the vacuum chamber to counteract this space-charge force [14].

An experiment of ferrite insertion was performed at the Los Alamos Proton Storage

Ring and the result has been promising [15]. Here we assume such an insertion will
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Figure 8.19: A typical ramp curve for a design of the future Fermilab prebooster.

over-compensate all the space-charge force leaving behind about Zk=njind � j25 
 of

inductive impedance. An over-compensation of the space charge will help bunching so

that the required rf voltage needed will be smaller.

The acceleration from kinetic energy 1 to 3 GeV in 4 buckets at a repetition rate

of 15 Hz is to be performed by resonant ramping. In order to reduce the maximum

rf voltage required, about 3.75% of second harmonic is added. A typical ramp curve,

with bucket area increasing quadratically with momentum, is shown in Fig. 8.19, which

will be used as a reference for the analysis below. If the present choice of initial and

�nal bucket areas and bunch areas is relaxed, the fraction of second harmonic can be

increased. However, when the second harmonic is beyond � 12:5%, it will only 
atten

the rf gap voltage in the ramp but will not decrease the maximum signi�cantly.

8.5.4.2 The RF System

According to the ramp curve in Fig. 8.19, the peak voltage of the rf system is Vrf �
185 kV. GriÆn proposed 10 cavities [13], each delivering a maximum of 19.0 kV. Each

cavity contains 26.8 cm of ferrite rings with inner and outer radii 20 and 35 cm, re-

spectively. The ferrite has a relative magnetic permeability of �r = 21. The inductance

and capacitance of the cavity are L � 0:630 �H and C � 820 pF. Assuming an average
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Figure 8.20: Transient beam loading power tetrode connected directly to an rf

cavity gap to feed-forward the same amount of negative charge to the downstream

end of the cavity gap so as to cancel the positive charge created there as the beam

passes by.

ferrite loss of 134 kW/m3, the dissipation in the ferrite and wall of the cavity will be

P � 14:2 kW. The mean energy stored is W � 0:15 J. Therefore each cavity has a

quality factor Q � 459 and a shunt impedance Rs � 12:7 k
.

Because each bunch contains q = 4:005 �C, the transient beam loading is large. For

the passage of one bunch, 4:005 �C of positive charge will be left at downstream end of

the cavity gap creating a transient beam loading voltage of Vb0 � q=C = 5:0 kV, where

C = 820 pF is the gap capacitance. We note from Fig. 8.19 that the accelerating gap

voltages at both ends of the ramp are only about or less than 10 kV in each cavity. If

the wakes due to the bunches ahead do not die out, we need to add up the contribution

due to all previous bunch passages. Assuming a loaded quality factor of QL = 45, we

�nd from Eq. (8.72) that the accumulated beam loading voltage can reach a magnitude

of Vb = 73 kV when the detuning angle is zero (see Fig. 8.26).

A feed-forward system is suggested which will deliver via a tetrode the same amount

of negative charge to the downstream end of the gap so as to cancel the positive charge

created there as the beam passes by. Without the excess positive charge, there will not

be any more transient beam loading. This is illustrated in Fig. 8.20.

Here, we are in a situation where the image current iim passing through the cavity
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gap is not equal to the beam current ib. However, either at zero detuning or nonzero

detuning, Eqs. (8.17) and (8.41) indicate that the portion of generator power transmitted

to the acceleration of the beam is directly proportional to the magnitude of the image

current. If the image current goes to zero in this feed-forward scheme, this implies

that the rf generator is not delivering any power to the particle beam at all, although

the beam is seeing an accelerating gap voltage. Then, how can the particle beam be

accelerated? The answer is simple, the power comes from the tetrode that is doing the

feed-forward. This explains why the tetrode has to be of high power.

Actually, the feed-forward system is not perfect and we assume that the cancellation

is 85 %. For a Æ-function beam, the component at the fundamental rf frequency is 56.0 A.

Therefore, the remaining image current across the gap is iim = 8:4 A. To counter this

remaining 15% of beam loading in the steady state, the cavity must be detuned according

to Eq. (8.30) by the angle

 = tan�1
�
iim cos �s

i0

�
; (8.112)

where �s is the synchronous angle and i0 = Vrf=Rs is the cavity current in phase with

the cavity gap voltage Vrf. For high quality factor of Q = 459 which is accompanied by

a large shunt impedance, the detuning angle will be large. Corresponding to the ramp

curve of Fig. 8.19, the detuning angle is plotted as dashes in Fig. 8.21 along with the

synchronous angle and maximum cavity gap voltage. We see that the detuning angle is

between 80Æ and 86Æ, which is too large. If a large driving tube is installed with anode

(or cathode follower) dissipation at � 131 kW, the quality factor will be reduced to the

loaded value of QL � 45 and the shunt impedance to the loaded value of RL � 1:38 k
.

The detuning angle then reduces to  � 29Æ at the center of the ramp and to � 40Æ or

� 56Æ at either end. This angle is also plotted in Fig. 8.21 as a dot-dashed curve for

comparison. Then, this rf system becomes workable.

8.5.4.3 Fixed-Frequency RF Cavities

Now we want to raise the question whether it is possible to have a �xed resonant fre-

quency for the cavity. A �xed-frequency cavity can be a very much simpler device

because it may not need any biasing current at all. Thus the amount of cooling can be

very much reduced and even unnecessary. It appears that the resonant frequency of the

cavity should be chosen as the rf frequency at the end of the ramp, or fR = 7:37 MHz

so that the whole ramp will be immune to Robinson's phase-oscillation instability [4].
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Figure 8.21: Detuning angle for the high Q = 459 and low QL = 45 situations.

However, the detuning will be large. For example, at the beginning of the ramp where

frf = 6:64 MHz, the detuning angle becomes  = 85:2Æ. Since the beam loading voltage

Vim is small, the generator voltage phasor ~Vg will be very close to the gap voltage phasor
~Vrf . As a result, the angle � between the gap voltage ~Vrf and the generator current pha-

sor ~ig will be close to the detuning angle, as demonstrated in Fig. 8.22. For example,

Fig. 8.23 shows that, at the beginning of the ramp, the detuning angle is  = 85:2Æ.

Although the average total power delivered by the generator

1
2
~ig � ~Vrf = V 2

rf

2RL

+ 1
2
iimVrf cos�s (8.113)

is independent of �, the energy capacity of the driving tube has to be very large.

Another alternative is to choose the resonant frequency of the cavity to be the rf

frequency near the middle of the ramp. Then the detuning angle  and therefore the

angle � between ~Vrf and ~ig will be much smaller at the middle of the ramp when the gap

voltage is large. Although � will remain large at both ends of the ramp, however, this

is not so important because the gap voltages are relatively smaller there. Figure 8.25

shows the scenario of setting the cavity resonating frequency fR equal to frf at the ramp

time of 13.33 ms.

There is a price to pay for this choice of fR; namely, there will be Robinson phase

instability for the second half of the ramp when the rf frequency is larger than fR. The
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Figure 8.22: For a �xed cavity resonant frequency, the detuning angle  is �xed at

each ramp time. When beam loading is small, the angle � between the gap voltage
~Vrf and the generator current ~ig will be close to  and will be large.

Figure 8.23: When the cavity resonant frequency is chosen as the rf frequency at

the end of the ramp, both the detuning angle as well as the angle between the cavity

gap voltage ~Vrf and the generator current ~Ig are large.
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Figure 8.24: Plot showing the high-intensity Robinson's phase-stability criterion is

satis�ed in the �rst half of the ramp but not the second. Regions above the curve

and to the left of the vertical straight line are unstable.

Figure 8.25: When the cavity resonant frequency is chosen as the rf frequency at

the middle of the ramp at 13.33 ms, although the detuning angle as well as the angle

between the cavity gap voltage ~Vrf and the generator current ~Ig are large at both

ends of the ramp, they are relatively smaller at the middle of the ramp where the

gap voltage is large.
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suÆcient condition for having a potential well for stable oscillation is, from Eq. (8.47),

the high-intensity Robinson's criterion:

Vbr
Vrf

<
cos�s

sin cos 
; (8.114)

where Vbr = iimRL is the in-phase beam loading voltage. Below transition, the syn-

chronous angle �s is between 0 and 1
2
�. For the second half of the ramp, the rf frequency

becomes higher than the resonant frequency of the cavity, we have  < 0. Figure 8.24

plots the criterion for the whole ramp. It shows that the criterion is well satis�ed for the

�rst half of the ramp but not satis�ed for the second half. Therefore, we must rely on

control loops in the rf system to maintain phase stability. Of course a low-level feedback

loop to reduce the cavity impedance helps tremendously.

Even when the beam is in an potential well for oscillatory motion, we still need

to worry whether the oscillation amplitude will grow or be damped. The instability

comes from the fact that, below transition, the particles with larger energy have higher

revolution frequency and see a smaller real impedance of the cavity, thus losing less

energy than particles with smaller energy. Therefore, the synchrotron amplitude will

grow. In other words, the upper synchrotron sideband of the image current interacts

with a smaller real impedance of the cavity resonant peak than the lower synchrotron

sideband. However, since the loaded quality factor QL is not small, the di�erence in real

impedance at the two sidebands is only signi�cant when the rf frequency is very close

to the cavity resonant frequency. Thus, we expect the instability will last for only a

very short time during the second half of the ramp. The growth rate of the synchrotron

oscillation amplitude has been computed and is equal to [2]

1

�
= � iim�!s(R+�R�)

2Vrf cos�s
; (8.115)

where

R+ � R� = Re
h
Zcav(!rf+!s)� Zcav(!rf�!s)

i
; (8.116)

iim is the image current, � is the velocity with respect to light velocity, !s=(2�) is the

synchrotron frequency, and Zcav is the longitudinal impedance of the cavity. We see

from Fig. 8.25 that the growth occurs for only a few ms and the growth time is at

least � 25 ms. The total integrated growth increment from ramp time 13.33 ms is

�G =
R
��1dt = 0:131 and the total growth is e�G � 1 = 14:0% which is acceptable.

Finally let us compute the beam loading voltage seen by a bunch including all the

e�ects of the previous bunch passage. In this example, ÆL � �hb=QL = 0:0698 for hb = 1
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Figure 8.26: (color) Plot of transient beam loading voltage including all previous

bunch passages,
q

C
(F1 + jF2), versus detuning angle  .

Table 8.1: F1 and F2 for some values of the detuning angle  .

 	 = ÆL tan F1 F2

0Æ 0Æ � 1

ÆL
0

84:9Æ 45Æ 0.12 1.2

87:5Æ 90Æ � ÆL
2

� 1

2

88:7Æ 180Æ � ÆL
4

0

and QL = 45. When the detuning angle  = 0, Vb � Vb0=(2ÆL). The functions F1 and

F2 are computed at some other values of  , which are listed in Table 8.1 and plotted

in Fig. 8.26. We see that the total transient beam loading voltage Vt falls rapidly as

the detuning angle  increases. It vanishes approximately � 88:7Æ and oscillates rapidly

after that. However, the choice of a large  is not a good method to eliminate beam

loading, because in general the angle between the generator current phasor ~ig and the

rf voltage phasor ~Vrf will be large making the rf system ineÆcient.
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8.6 Exercises

8.1. For a Gaussian bunch with rms length �� in a storage ring, �nd the Fourier com-

ponent of the current at the rf frequency. Give the condition under which this

component is equal to twice the dc current.

8.2. Prove the fundamental theorem of beam loading when there are electromagnetic

�elds inside before the passage of any charged particle.

8.3. In Section 8.2, rf-detuning and Robinson's stability condition have been worked out

below transition. Show that above transition the detuning according the Fig. 8.4

leads to instability. Draw a new phasor diagram for the situation above transi-

tion with stable rf-detuning. Rederive Robinson's high-intensity stability criterion

above transition.

8.4. Derive Eq. (8.76), the generator power delivered to the rf system with multi-passage

of equally spaced bunches.

8.5. (a) Derive Eq. (8.90), the beam loading voltage seen a charge particle inside a

Gaussian bunch of rms length �� at a distance � ahead of the bunch center.

(b) Using the property of the complex error function,

lim
��!0

w

�
i�p
2��

�
= lim

��!0

2p
�
e�

2=(2�2� )

Z 1

�
p
2��

e�t
2

dt =

8<
:

0 � > 0 ;

1 � = 0 ;

2 � < 0 ;

(8.117)

derive Eq. (8.92), the transient beam loading voltage seen by the head, center, and

tail of the bunch as the bunch length shortens to zero.

8.6. (1) Derive Eqs. (8.94) and (8.95), the transient beam loading voltage seen by a

charge particle in a bunch with parabolic distribution at a distance T from the

head of the bunch.

(2) Derive Eqs. (8.99) and (8.99), the transient beam loading voltage seen by a

charge particle in a bunch with cosine-square distribution at a distance T from the

head of the bunch.

(3) Derive Eqs. (8.102) and (8.103), the transient beam loading voltage seen by a

charge particle in a bunch with cosine distribution at a distance T from the head

of the bunch.
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8.7. For a batch withM consecutive bunches inside a ring of rf harmonic h, the steady-

state beam loading voltage experienced by the kth bunch when it crosses the cavity

gap is given by Eq. (8.5.1).

(1) Continuing bucket by bucket, write down the beam loading voltage experienced

by the �rst bunch of the train when it crosses the cavity again. Since this beam

loading voltage must equal to the one given by Eq. (8.5.1) with k = 1, determine

the residual beam loading voltage V0 in the cavity at that time and show that it

is given by Eq. (8.110).

(2) Show that the di�erence in beam loading voltage �Vb experienced by the last

and �rst bunch is given by Eq. (8.111).

(3) Show that �Vb assumes a maximum

�Vb = Vb0
e�ÆL

h
1� e�

1
2
(h�1)ÆL

i2
(1� e�ÆL)(1� e�hÆL)

: (8.118)

when M = 1
2
(h+ 1).

8.8. For a batch of 84 bunches inside the Fermilab Main Injector as described in

Sec. 8.5.3,

(1) compute the detuning angle with the requirement that the generator current

is in phase with the rf voltage with respect to the middle bunch of the batch,

(2) compute the rf phase slip between the transient beam loading voltages of suc-

cessive bunches and show that because of the high quality factor the accumulation

for half of the batch (42 bunches) is only around 1Æ.

8.9. Exercise 8.7 can also be pursued in the frequency domain. Fill in the missing steps

of the following derivation.

(1) ConsiderM = 2m point bunches each with charge q insideM = 2m consecutive

buckets in a ring with rf harmonic h. The current is

I(t) = q
mX
n=1

Æ[t� (n� 1
2
)Tb] + q

mX
n=1

Æ[t+ (n� 1
2
)Tb] ; (8.119)

where Tb is the bucket width. In the frequency domain, the current at each revo-

lution harmonic is given by

Ip =
1

T 0

Z T0=2

�T0=2

I(t)e�j2�pt=T0 =
2q

T0

mX
n=1

cos
2�p(n� 1

2
)

h
; (8.120)
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where T0 = hTb is the revolution period and p is an integer ranging from �1 to

+1.

(2) The beam loading voltage excited at each harmonic is Vbp = IpZp where the

loaded impedance of the cavity is

Zp = RL cos pe
j p with tan p = 2QL

�
h

p
� p

h

�
; (8.121)

and RL and QL are the loaded shunt impedance and quality factor.

(3) Considering the symmetry of the impedance, the beam loading voltage in the

time domain becomes

Vb(t) =
X
p

Ip

�
cos2 �p cos

2�pt

T0
� cos�p sin p sin

2�pt

T0

�
: (8.122)

(4) Using the information of the Main Injector in Sec. 8.5.3, evaluate numerically

and plot Ip, Vbp, and Vb(t).
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